If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+96t+4=0
a = 16; b = 96; c = +4;
Δ = b2-4ac
Δ = 962-4·16·4
Δ = 8960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8960}=\sqrt{256*35}=\sqrt{256}*\sqrt{35}=16\sqrt{35}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{35}}{2*16}=\frac{-96-16\sqrt{35}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{35}}{2*16}=\frac{-96+16\sqrt{35}}{32} $
| (10x-28)=(10x-13) | | 4x-2=2x-9 | | 2x^2-5x+14=12 | | 6x-(2.5x+30)=40 | | 2x^2+2x+2=6 | | 5y+3=4y+8 | | Z=2+9i | | 16x+1=6x+11 | | 10,4-2y=12 | | |x-4|+3=14 | | 1/2(6x+10)=4x-7 | | t=16t^2+96t+4 | | X^2+6x+4=2x+4 | | -3x+5=-7x+13 | | j-(-2)+7=-12 | | -17=7x+4 | | y2+15y+36=0 | | 3x-12=-2x+3 | | 3x/15=15/10 | | -2j+7=-12 | | 43x^2-29x=0 | | 4(x-1)-1=2x+7 | | 2x-1=5x+35 | | 2a+8+3a^2=0 | | 4/5w+5=10 | | 3(x–5)=4x+4 | | 28y^2+39y+8=0 | | 3(x-–5=4x+4 | | 4n^2+3-7=0 | | r4 =75 | | 8d+5=7d+10 | | √441=x^2 |